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ASPECTS OF MODEL SELECTIGN IN
MULTIVARIATE ANALYSES

1. Introduction

Issues of model selection arise in many statistical problems that deal
with a large number of observed variables. Some of the more commonly encoun-
tered problems involve use of multiple rejression techniques, where it is of-
ten desired to find a relatively simple function that models some underlying
phenomenon. Many statistical package programs (BMDP, SAS, SPSS, etc.) contain
a number cf subset selection algorithms (e.g., forward and backwards stepwise
methods) for this purpcse. There is a good deal of literature on the subject
of choosing "the" algorithm that will produce a "best" model, but much less
has been done concerning proper interpretation of the selected fitted equation.
This is especially true in regard to assessment of the predictive ability of
the model chosen.

similar situations accompany other types of problems. Discriminant anal-
ysis is in many ways like multiple regression: a goal is to obtain a discrimi-
nant function to serve as a basis for classification of “fyture® objects into
one of a number of groups. The choice of a specific discriminant function to
be used and estimation of its associated misclassification probabilities are
issues that resemble model selection and assessment in multiple regression.

Still other types of statistical problems entail reduction of a larce
nunber of variables to a more manageable collection. One example of this is
the study of sensitivity analysis for reactor simulation codes. In some
cases, there are hundreds of input variables of interest, and development of
an understandable explanation of the system reguires model bpuilding with an
eye towards limiting the dimension of the input space.

The purpose of this paper is to examine aspects of variable selection
proceaures, particulasly in terms of interpreting the result obtained.  For
clarity of the presentation, the discussion is pursued in the context of
multiple regression.



7. The Optimism Principle

A major tenet of conventional statistical folklore is that a model chosen
via some selection process provides a much more "optimistic" explanation of

the data used in its derivetion than it does of other data that will arise in
a simiilar fashion. One of the more eloquent statements of this principle is

"Testing the procedure on the data that gave it birth is
almost certain to overestimate performance, for the opti-

mizing process that chose it from among many possible pro-
cedures will have made the greatest use possible of any

and all idiosyncrasies of those particular data... As a
result, the procedure will likely work better for thesc

data than for almost any other data that will arise in
practice.” Mosteller and Tukey (1977), p. 37.

This doctrine appears to be based on a long history of unfortunate experiences
encountered by statisticians.

The most inmportant words in the above quntation are "from among many pos-
sible procedures,” as the selcction process plays a key role. Providing a

formal demonstration of this phcnomenon for subset selection procedures in
multiple regression is not difficult. Consider the general Tinear model

y = X¢ 4 ¢ (?.1)
where
X is an n x p matrix of constants of rank p< n,

K is a p-componeni vector of unknown parameters,

and ¢ (0, o™1) for o urknown,
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The model (2.1) is called the “"full model," and the possibility that some of
the components of B are zero is often entertained. The purpose of subset se-
lection algorithms is to extract a parsimonious fitted equation.

It is well known that the residual mean square from the least squares fit
te the full model,

sep =¥t LX) X ) ys(nop)

is an unbiased estimator of 02. The same does not hold for residual mean
squares from fitted models chosen by subset selection proceduras. Suppose
that all 2P-1 teast squares subset fits are considered and the "vest" one s
selected. If "best" is taken to mean the fit whose residual mean square is a
minimum c¢f those observed, then

-2 o2 .
Cnin S TFG1 for all values of y (2.2)
where .. denotes the minimized value corresponding Lo the "best" fit.

. .Jnn
Since “Ful] is unbiased for 02 over the distribution of y, iL is obvious
. o) ~

2
from (2.2) that 0N

cases the bias can be substantial.

is not. Clearly o is "optimistic" and in some

min

2]
Here o represents a baseline measure of predictive ability: it is tpe

minimum obtainable squarcd error of prediction of future values of y and cor-

)

responds to use of the “"true" vector p in a predictor, That “&in is on
7 »

average less than o© means that a naive user of the selected model could

easily bhe misled into believing that he can prodict much boetter than he

actualiy will (and in some cases, better than is even possible).

A crulde analogy can be drawn with the theory of order statistics. Sup.
pose {li: i=1,2,..,m}) is a random sample drawn from some distribution func-
tion G(z). If l(‘) is the first order statistic, its distributional propoer-
ties can be evaluated. For example,

Pr(Z(l) > ¢) = [é dG(z)Jm
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In short, the distribution function of Z(]) takes into account the fact that
2(1) is the smallest of the observed {Zi}' In multiple regression, if a
particular subset model is selected because it minimizes the observed value of
some criterion - such as a residual mean square, Cp statistic (Mallows,
1973), or PRESS statistic (Allen, 1971) - the distributional properties of the

observed optimized criterion must formally account for- the seiection process.

Unlike the theory of order statistics, however, exact distributional re-
sults are nearly impossible to obtain forr mxdel selection in the multiple re-
gression framework. Nonetheless, simulation work has been pursued and Berk
(1978a) has found realistic examples where bias in residual mean squares frcm
fitted models chosen via stepwise algorithms excecded 20% of the actual value
of 02. Many other statistics are similarly biased over the subset selection;
observed values of Cp and PRESS tend to be2 much lower than might otherwise
be expected (Berk, 1978b) while values of R~ are greatly inflated (Diehr and
Hoflin, 1974; Rencher and Pun, 1980).

The magnitudes of the biases in the usual summary statistics depend on a
number of factors. The probiems seem to be most serious when:

1. The number of observations, n, is of moderat> size
(say, less than 50) and the number of independent
variables, p, is appreciable. For many variable se-
lection problems, p of 10 or 20 is not out of the
ordinary so that "best" fit may he chosen from liter-
ally thousands (Zp-l) of candidates. When this de-
gree of choice i~ available, substantial optimism cuan
be induced.

2. The number of observations is small. Here a good deal
of variability exists in statistics such as residual
mean squares, and selecting the "best" from such a
class of jtems can lead to oplimism as well.



The main point to keep in mind is that imitation of standard statistical
techniques that assume the form of the model 1is "known" - as opposed to se-
lected - can lead to conclusions very much in error. For example, substitu-
tion of &%in into the usual formulas for confidence intervals is not Justi-
fied theoretically and ensuing optimism can lead to a number of problems. In

some sense, application (well, abuse) of the standard metnodciogy has failed
and aiternatives musti he considered.
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3. Predictive Ability of Regression Models

It is not difficult to obtain good assessments of the predictive ability
of fitted models that are the product of subset selection procedures. In or-

der to develop the ideas behind such assessments, it is necessary to first in-
troduce some notation.

Similar to the previous section, denote the general linear model

y=Xeg+e

- ~

where X, 8, and e are as in (2.1). Consider any subset selection method, such
as a forﬁérd stépwise algorithm. The method has the p:operty that given an
observed Yor @ p-component vector Bo is produced for purposes of parameter
estimation. If ihe full model is not selected, some of the components of éo
will be zero. Tne distribution of y together with the selection algorithm
thus induces a distrioution on Rp far the ensuing estimator é. Assume the
i 1duced distribution is well enough behaved so that moments of order two exist

and it is possible to write

g~ (5 35) (3.1)

Given this characterization of estimators produced by subset selection,

the predictive ability of the associated fitted model car be 2valuated. Sup-
pose Xg¢ i a known p-component vector and

Y¢ = f% B+ ef for efu,(o,u*)

is an observation conforming to the structure of (2.1) and independent of é.
If the realized (y,X) is the product of some physical mechanism that has gen-

erated the data, (yf,ff') can be thought of uas a "future observation" fram
theﬁsame mechanism. The predicted value of y¢ based on the selected model
is yg = x%é and the error of prediction is y. - yc.
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The predictive ability of the selected model is reflected by the distri-

bution of Ye-Y¢ for different choices of X g A useful criterion for
evaluating prediction is the mean squared error

MSE(x¢) = E(yg-ys)?

= 0?4 (8-u5)" xxp (B-43) + tr I xxp

An cverall measure of predictive ability can be obtained by integrating the
mean squared error of prediction at X with recpect to a distribution F on
RP for Xg. The integral

where C is the matrix of expected cross products defines

IMSEF(?) = ép MSE(ff) dF

= ol 4 (B-ui)' C(B-pg) + tr IgC (3.2)

Here F may be taken to be any distribution on Rp, so that IMSEF(B) 1oosely
denotes the predictive ability of the fitted model over the region of the

design space "highlighted" by F. Cf course, other types of a "loss function"
besides mean squared error cnuld be consirdered and a similar development

pursued.

Expression (7.2) reflects two importint aspects of prediction. The first
is that a "diminishing returns" effect sets in, and increasing the number of

observations used to derive § past a certain point does very little to improve
predictive ability. This can be easily demonstrated in two simple examples.
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Example: Suppose fu;}, i=1,2,..,n, are iid N(u,02) and it is
of interest to predict a "future" observation u from the same
population. A common predictor for this case is u, = Zui/n.

whose standard error of predicticn is

./E(u-a‘n)2 = a/1+(1/n)

For n = 10 this standard error is 1.049 o, while for n = 100 it
is 1.005 ¢ and declines only to 1.000 ¢ as n approaches infini-
ty. The percentage reduction in the standard error due to in-
creasing n beyond 10 is quite small, and reflects that the com-

n

ponent of error due to prediction of the future very quickly
dominates the component of error due to estimation of the para-
meter .

Example: In the general linear model (2.1), partitition
X = [xl X,land B' = [ﬁi @é] so that the model can be written

y =X B+ X B, +e

Consider the estimator

N
By = (X3 X)) Xy
0

~

obtained by "underfitting" the full model using ordinary least
squares. Moments of A are well known and substitution into

(3.2) gives

\

- v . 2 ] ' 1 2 . ! _]
IMSEL(B,) = 9% + B5 LA 1T C [-A [ & + 0% trC [(X] X)) 0)

\ 0 0
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where A = (X]'X])']X]'X2 is the alias matrix for the design. The

three teims in IMSEF (Bu) nave simple interpretations. The first, 02, can

be thought of as error due solely to prediction of the "future" and can never
be reduced by taking more observations. The second term,

-

. IR
g5 [-Ay 11 CL-A |8y =/ [x'(8 - Egu)] dF

P

is an average squared bias and, when B, # 0, represents a penalty for fitting
a model cf the wrong form. This term also does not decrease intrinsically
with sample size: for a "doubled" data set of 2n observations,

y* = (x) implies Ayx = Ay
X

and bias properties remain identical to those for the fit to n observations,
The third term of IMSE. (Bu),

@ tr e [oox)Th o) = var (xE) oF

0 o/ &gF

is the component of error due to the variability in parameter estimation.
This term tends to decline as 1/n and in most cases is dominated by the sum of

the first two terms. It follows that IMSE F (é\) is not particularly sen-
sitive to the magnitude of n. N

As fitted models that are the product of subse. selectiun procedures are
quite difficult to evaluate theoretically, a rigorous demonstration of dimin-
ishing returns for them along the lines of the above exampie¢ is not easy to
come by. However, there seems little reason to believe that the predictive

ability of such models behaves in a fundamentally different fashion this
regard.
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The second important aspect of prediction using regression fits in the
dependence of IMSEF (B) on F. This phenomenon is apparent from inspection
of (3.2) and, crudely stated, means that fitted models predict better at some
values of Xg than at others. When the fitted model is of the wrong form,
this is especially true. One simple illustration is provided in Figure 1,
where the "true" model exhibits some curvature but the fitted model does not.
Effects of cutliers and heteroscedasticity on fitted models can also

fitted model
'true'’ model

Figure 1

exaggerate differences in pr-edictive ability at different vaiues of Xeo
This "localized" nature of prediction should be kept in mind in analysis of

many problems.
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4. Analysis of Multivariate Data

Often in the analysis of large data sets, the "right" way to proceed is
not immediately apparent. Consequently, some aspects of model selection or
so-called exploratory data analysis inevitably arise. Competing models may be
temporarily entertained and the final choice of a predictive equation (o~ dis-
criminant Ffunction or whatever) is influenced by many factors, including the
personal experiences and prejudices of the people involved. This state of
affairs is not likely to change in the near future.

It is very important to develop the underpinnings of proper assessment of
models produced by such selection procedures. The main point to keep in mind
in this regard is the optimism principle: when a model is chosen because of
gqualities exhibited with respect to a particular set of data, its "explana-
tion" of future observations that arise in a similar fashion will almost cer-
tainly not be as good as would naively be expected based on the original data.
As illustrated in the specific examples of bSection 2, blind application of
ordinary statistical methods that fail to account for the selection process
can leald to incorrect conclusions. Since it is usually impractical to attempt
derivation of a theory to rigorously handle the optimism in such analyses, al-

ternatives must be considered.

A crervy 21d concept can be adapted to deal with this problem. Basically,
the anproach Lplils the data into two portions (not necessarily of equal size)
pefore analys:is Lo (hlain a fitted model. The selection can be applied to one
portion alone, and assessment can be made using the other portion. For re-
gression problems, the general strategy behind this approach is to take advan-
tage of the diminishing returns effect to agevelop "almost" as good a predictor
from a portion of the data as would have been obtained using the complete set
and symultaneously avoid the optimism principle by basing the assessment cn
observations not used in the model selection. Idz2as along these lines have
been proposed since the 1930's - see Stone (1974) for a brief historical
account.
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Despite its early origins, the subject of cross-validation has not yet
" been thoroughly eramined. Specific details for implementation of a "split-
ting" strategy have not been laid out in detail, particularly in regard to
underlying theoretical justifications of the methods involved. Snee (1977)
has suggested using the DUPLEX algorithm to determine the split and then lak-
ing the observed mean squared error of prediction of the "validation" portion
as an overall evaluation of the fitted model. Mosteller and Tukey (1977) have
proposed a three-way-split, using one portion of the data to divine the func-
tional form of the model, a second portion to estimate parameters, and < third
portion for assessment. Stiil nthers have simplistically suggested a purely
random division of the data.

The principles behind splitting are not difficult to grasp. It is impor-
tant to maintain the integrity of thc validation sample, so as to allow the
data *o "play the role" ¢ ruture cbservations produced by the phrsical mecha-
nism of interest. In tnis regard, it is presumed that the stated full model
is correct; otherwise it may not be possible to obtain a realistic evaluation
of predictive ability. For example, in an experiment where substantial day to
day varialion exists but the observed data are coiiected from only onc day,
"actual variability" would likely be underestimated based on the observations
at hand.

When splitting a data set, the size of the validation portion does not
appear to be crucial (within broad limits) and primarily should reflect senti-
ments concerning the importance of developing a predictor relative to assess-
ing what has been developed. As for which observations are placed into the
rospective portions, principles of sampling apply. Some have suggested a ran-
don division, but because of the localized nature of predictive ability an
attempt should be made to assure Lhat data from all regions of the design
space are represcented in bholh portions. When the number of variables is
large, "gaps" can easily result in splits determined by a simple random sam-
pling procedure. This motivates an approach similar in nature to stratified
sampling, where the strata here loosely correspond to different regions of the
design space. The DUPLEX algorithm incorporates thic notion, and other meth-
ods also suggest themselves.,
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Using the validation sample (however chosen) is fairly straightforward.
The main point to keep in mind is that predictive ability often differs de-
pending on the region of interest in the design space. This is particularly
true when the fitted model is not of the correct form. This motivates a
"localized" use of validation residuals for ascessment, though for most pur-
poses an examination of plots of these residuals can be the best way to ac-
quire an understanding of the qualities of the model.
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5. Summary

Analysis of data sets that involve large numbers of variables usually en-
tails some type of model ritting and data reduction. In regression problems,
a fitted model that is obtained by a selection process can be difficult to
evaluate because of optimism induced by the choice mechanism. Problems in
areas such as discriminant analysis, calibration, and the like often lead to
similar difficulties. The preceeding sections reviewed some of the general
ideas behind assessment of regression-type predictors and illustrated how they
can be easily incorporated into a standard data analysis.
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